Quantitative Structure-Activity Relationships of Antifungal 1-[1-(Substituted phenyl)vinyl]imidazoles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure - Antifungal Activity Relationships of Polyene 1 Antibiotics of the Amphotericin B Group

15 A comprehensive comparative analysis of the structure – antifungal activity relationships 16 for the series of biosynthetically engineered nystatin analogues, their novel semisynthetic 17 derivatives, as well as amphotericin B (AMB) and its semisynthetic derivatives was performed. 18 The data obtained revealed the significant influence of the structure of the C7 – C10 polyol 19 region on the...

متن کامل

Structure-activity relationships of new aranorosin analogs to antifungal activity.

prepared by stirring a mixture of 1 with the corresponding carboxylic acid (1.1 equiv.) in the presence of dicyclohexylcarbodiimide (DCC) (1.1 equiv.) and 4-dimethylaminopyridine (DMAP) (0.1 equiv.) in CH2Cl2 at room temperature for 24 hours. The crude products, obtained after usual work up, were purified by preparative TLC on silica gel (Article No. 13794, E. Merck) using CHCl3 MeOH (9:1) as t...

متن کامل

Quantitative structure-activity relationships for the toxicity of substituted benzenes to Cyprinus carpio.

OBJECTIVE To measure the 96h-LC50 values of 32 substituted benzenes to the carp and to study the relationship between quantitative structure-activity and structural parameters of chemicals. METHODS The acute toxicity values of 32 substituted benzenes to the carp were determined in a semistatic test. The energy of the lowest unoccupied molecular orbital, and the highest occupied molecular orbi...

متن کامل

Nonlinear Prediction of Quantitative Structure-Activity Relationships

Predicting the log of the partition coefficient P is a long-standing benchmark problem in Quantitative Structure-Activity Relationships (QSAR). In this paper we show that a relatively simple molecular representation (using 14 variables) can be combined with leading edge machine learning algorithms to predict logP on new compounds more accurately than existing benchmark algorithms which use comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pesticide Science

سال: 1987

ISSN: 1348-589X,1349-0923

DOI: 10.1584/jpestics.12.445